
Anonymous
0
0
Giải bài tập trang 30 Chuyên đề Toán 10 Bài 3 - Kết nối tri thức
- asked 2 months agoVotes
0Answers
0Views
Giải bài tập trang 30 Chuyên đề Toán 10 Bài 3 - Kết nối tri thức
Vận dụng trang 30 Chuyên đề Toán 10:
Lãi suất gửi tiết kiệm trong ngân hàng thường được tính theo thể thức lãi kép theo định kì. Theo thề thức này, nếu đến kì hạn người gửi không rút lãi ra thì tiền lãi được tính vào vốn của kì kế tiếp. Giả sử một người gửi số tiền A với lãi suất r không đổi trong mỗi kì.
a) Tính tổng số tiền (cả vốn lẫn lãi) T1, T2, T3 mà người đó nhận được sau kì thứ 1, sau kì thứ 2 và sau kì thứ 3.
b) Dự đoán công thức tính tổng số tiền (cả vốn lẫn lãi) Tn mà người đó thu được sau n kì. Hãy chứng minh công thức nhận được đó bằng quy nạp.
Lời giải:
a)
– Tổng số tiền (cả vốn lẫn lãi) T1 mà người đó nhận được sau kì thứ 1 là:
T1 = A + Ar = A(1 + r).
– Tổng số tiền (cả vốn lẫn lãi) T2 mà người đó nhận được sau kì thứ 2 là:
T2 = A(1 + r) + A(1 + r)r = A(1 + r)(1 + r) = A(1 + r)2.
– Tổng số tiền (cả vốn lẫn lãi) T3 mà người đó nhận được sau kì thứ 3 là:
T3 = A(1 + r)2 + A(1 + r)2r = A(1 + r)3.
b) Từ câu a) ta có thể dự đoán Tn = A(1 + r)n.
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 1 ta có T1 = A(1 + r) = A(1 + r)1.
Như vậy khẳng định đúng cho trường hợp n = 1.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: Tk = A(1 + r)k.
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:Tk + 1 = A(1 + r)k + 1.
Thật vậy,
Tổng số tiền (cả vốn lẫn lãi) Tk + 1 mà người đó nhận được sau kì thứ (k + 1) là:
Tk + 1 = A(1 + r)k + A(1 + r)k.r = A(1 + r)k(1 + r) = A(1 + r)k + 1.
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.
Vậy Tn = A(1 + r)n với mọi số tự nhiên n ≥ 1.
Bài 2.1 trang 30 Chuyên đề Toán 10: Sử dụng phương pháp quy nạp toán học, chứng minh các đẳng thức sau đúng với mọi số tự nhiên n ≥ 1.
Lời giải:
a) Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 1 ta có 2.1 = 1(1 + 1).
Như vậy khẳng định đúng cho trường hợp n = 1.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có:
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:
Thật vậy, sử dụng giả thiết quy nạp ta có:
= k(k + 1) + 2(k+1) = (k + 1)(k + 2) = (k + 1)[(k + 1) + 1].
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.
b) Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 1 ta có 12 =
Như vậy khẳng định đúng cho trường hợp n = 1.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có:
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:
Thật vậy, sử dụng giả thiết quy nạp ta có:
= (k + 1)2+
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.
Bài 2.2 trang 30 Chuyên đề Toán 10: Mỗi khẳng định sau là đủng hay sai? Nếu em nghĩ là nó đủng, hãy chứng minh nó. Nếu em nghĩ là nó sai, hãy đưa ra một phản ví dụ.
a) p(n) = n2 – n + 11 là số nguyên tố với mọi số tự nhiên n;
b) n2 > n với mọi số tự nhiên n ≥ 2.
Lời giải:
a) Khẳng định này là sai vì với n = 11 ta có p(11) = 112 không phải số nguyên tố.
b) Khẳng định này là đúng. Ta chứng minh bằng quy nạp:
Bước 1. Với n = 2 ta có 22 = 4 > 2.
Như vậy khẳng định đúng cho trường hợp n = 2.
Bước 2. Giả sử khẳng định đúng với n = k ( k ≥ 2), tức là ta có: k2 > k
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: (k + 1)2 > k + 1
Thật vậy, sử dụng giả thiết quy nạp ta có:
(k + 1)2 = k2 + 2k + 1 > k + 2k + 1 > k + 1.
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 2.
Bài 2.3 trang 30 Chuyên đề Toán 10: Chứng minh rằng n3 – n + 3 chia hết cho 3 với mọi số tự nhiên n ≥ 1.
Lời giải:
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 1 ta có 13 – 1 + 3 = 3 ⁝ 3.
Như vậy khẳng định đúng cho trường hợp n = 1.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: k3 – k + 3 ⁝ 3
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: (k + 1)3 – (k + 1) + 3 ⁝ 3
Thật vậy, sử dụng giả thiết quy nạp ta có:
(k + 1)3 – (k + 1) + 3
= (k3 + 3k2 + 3k + 1) – (k + 1) + 3
= (k3 – k + 3) + (3k2 + 3k)
Vì (k3 – k + 3) và (3k2 + 3k) đều chia hết cho 3 nên (k3 – k + 3) + (3k2 + 3k) ⁝ 3 hay (k + 1)3 – (k + 1) + 3 ⁝ 3.
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.
Bài 2.4 trang 30 Chuyên đề Toán 10: Chứng minh rằng n2 – n + 41 là số lẻ với mọi số nguyên dương n.
Lời giải:
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 1 ta có 12 – 1 + 41 = 41 là số lẻ.
Như vậy khẳng định đúng cho trường hợp n = 1.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: k2 – k + 41 là số lẻ.
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: (k + 1)2 – (k + 1) + 41 là số lẻ.
Thật vậy, sử dụng giả thiết quy nạp ta có:
(k + 1)2 – (k + 1) + 41
= (k2 + 2k + 1) – (k + 1) + 41
= k2 + k + 41 = (k2 – k + 41) + 2k
Vì k2 – k + 41 là số lẻ và 2k là số chẵn nên (k2 – k + 41) + 2k là số lẻ hay (k + 1)2 – (k + 1) + 41 là số lẻ.
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.
Bài 2.5 trang 30 Chuyên đề Toán 10: Chứng minh rằng nếu x > –1 thì (1 + x)n ≥ 1+ nx với mọi số tự nhiên n.
Lời giải:
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 1 ta có (1 + x)1 = 1 + x = 1 + 1.x.
Như vậy khẳng định đúng cho trường hợp n = 1.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: (1 + x)k ≥ 1+ kx.
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: (1 + x)k + 1 ≥ 1+ (k + 1)x.
Thật vậy, sử dụng giả thiết quy nạp ta có:
(1 + x)k + 1
= (1 + x)(1 + x)k ≥ (1 + x)(1+ kx) = 1 + x + kx + kx2 > 1 + x + kx = 1+ (k + 1)x.
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.
a) Tính S1, S2, S3.
b) Dự đoán công thức tính tồng Sn và chứng minh bằng quy nạp.
Lời giải:
a) S1 = S2 = S3 =
b) Từ câu a) ta dự đoán Sn =
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 1 ta có S1 =
Như vậy khẳng định đúng cho trường hợp n = 1.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: Sk =
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: Sk + 1 =
Thật vậy, sử dụng giả thiết quy nạp ta có:
= Sk +
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.
Bài 2.7 trang 30 Chuyên đề Toán 10: Sử dụng phương pháp quy nạp toán học, chứng minh rằng số đường chéo của mộtđa giác n cạnh (n ≥ 4) là
Lời giải:
Ta chứng minh bằng quy nạp theo n với n ≥ 4.
Bước 1. Với n = 4 ta có đa giác là tứ giác.
Số đường chéo của tứ giác là 2 = .
Như vậy khẳng định đúng cho trường hợp n = 4.
Bước 2. Giả sử khẳng định đúng với n = k (k ≥ 4), tức là ta có: Số đường chéo của mộtđa giác k cạnh (k ≥ 4) là
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: Số đường chéo của mộtđa giác (k + 1) cạnh (k ≥ 4) là
Các đường chéo còn lại của đa giác (k + 1) cạnh ngoài đường chéo này là các đoạn nối Ak + 1 với các đỉnh từ A2 đến Ak – 1 và đoạn A1Ak (màu đỏ). Tổng cộng có (k – 1) đường.
Vậy tổng số đường chéo của đa giác (k + 1) cạnh là:
+ (k – 1) =
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 4.
Bài 2.8 trang 30 Chuyên đề Toán 10: Ta sẽ “lập luận” bằng quy nạp toán học đề chỉ ra rằng: “Mọi con mèo đều có cùng màu”. Ta gọi P(n) với n nguyên dương là mệnh đề sau: “Mọi con mèo trong một đàn gồm n con đều có cùng màu”.
Bước 1. Với n = 1 thì mệnh đề P(1) là “Mọi con mèo trong một đàn gồm 1 con đều có cùng màu”. Hiền nhiên mệnh đề này là đúng!
Vậy, theo nguyên lí quy nạp thì P(n) đúng với mọi số nguyên dương n. Nói riêng, nếu gọi N là số mèo hiện tại trên Trái Đất thi việc P(N) đúng cho thấy tất cả các con mèo (trên Trái Đất) đều có cùng màu!
Tất nhiên là ta có thề tìm được các con mèo khác màu nhau! Theo em thì “lập luận” trên đây sai ở chỗ nào?
Lời giải:
Lập luận này sai ở Bước 2 khi k = 2.